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The problem of arithmetic operations performance in number fields is actively researched by many scientists, as evidenced by
significant publications in this field. In this work, we offer some techniques to increase performance of software implementation
of finite field multiplication algorithm, for both 32-bit and 64-bit platforms. The developed technique, called “delayed carry
mechanism,” allows to preventing necessity to consider a significant bit carry at each iteration of the sum accumulation loop. This
mechanism enables reducing the total number of additions and applies the modern parallelization technologies effectively.

1. Introduction

The cryptographic transformations with public key are revo-
lutionized fromDiffie and Hellman consideration to modern
algebraic curves cryptosystems [1]. However, transformations
have stayed permanent—with operations in the number field
𝐺𝐹(𝑝). The integer multiplication takes a special place in
number field operations; see Figure 1. One of the urgent prob-
lems of public key cryptosystem improvements is an increase
of software performance and hardware implementation. One
of the approaches to increasing cryptosystems performance
is the increasing of the performance of finite field arithmetic
in multiplication operations.

The problem of the speedup of arithmetic operation in
number fields is actively researched by many scientists, as
evidenced by significant publications in this area [2–11].
Except the arithmetic operations algorithms, it is interesting
to look at/study approaches to the architecture of software

libraries [12–21] with field operations, which allow decreasing
overheads on field operations in whole.

Publications analysis [2–10] enabled extracting the most
effective multiplication algorithms, Comba [2, 3] and Karat-
suba [3, 8, 10]. However, the Comba algorithm shows bet-
ter results in tests performance (benchmark) of software
implementations on modern platforms [3–9]. Karatsuba-
Comba described multiplication (KCM) algorithm for the
RISC processors in the article [8]. The KCM algorithm is an
interesting symbiosis of Comba and Karatsuba algorithms,
where Karatsuba algorithm is specially used for machine
word multiplication. As a result, the main goal of this
paper is to provide a suggestion for the effective increasing
of software implementation of finite field number 𝐺𝐹(𝑝)
multiplication (squaring) via well-known Comba algorithm
[2, 3, 8]. Such researches were caused by the necessity of
effective confirmation of software implementation of known
algorithms for continuous development ofmodern 32-bit and

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 863617, 7 pages
http://dx.doi.org/10.1155/2014/863617

http://dx.doi.org/10.1155/2014/863617


2 Mathematical Problems in Engineering

Cryptographic transformations Digital signature
generation and verification Key exchange

mov, mul, shr, shl, add, 

Addition Subtraction Squaring InversionMultiplication

Scalar multiplication of elliptic curve point
Point addition Point doublingArithmetic in elliptic curve point group

Arithmetic in finite field

CPU commands

Encryption/decryption

sub . . .

Figure 1: Operation hierarchy of elliptic curve cryptosystem.
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Figure 2: Representation of large integers.

64-bit platforms. It is important to mention that last ten years
have seenmuchdevelopment in the direction of themulticore
CPU and multi-CPU systems [8, 9].

2. Multiplication Algorithm-Prototype
Description and Its Modification

Let us begin by introducing some notation and basic defini-
tions. Carry is a digit that is transferred from one column of
digits to another column of more significant digits during a
calculation algorithm; 𝑤 is machine word size and 𝑛 is the
number of machine words required to store a large integer.
We present large integers (multipliers) as a set of 𝑛 machine
words; see Figure 2. For example, if we have 65-bit integer, we
need three 32-bit machine words to store it.

The Comba algorithm [2] is based onmain loops p. 2 and
p. 3 and nested loops p. 2.1 and p. 3.1 (Algorithm 1). In the low
level of hierarchy, in loops p. 2.1 and p. 3.1 we will compute
64-bit integer product (𝑢V)(2𝑤) which consists of two 32-bit
integers 𝑢(𝑤) and V(𝑤).

The sum accumulation occurs in 32-bit temporary vari-
ables 𝑟0, 𝑟1, and 𝑟2, on each iteration p. 2.1.2 and p. 2.1.3.

The final result of the assignment is temporary variables
𝑟0, 𝑟1, and 𝑟2 which are changing at each iteration on p. 2.2.

Comba’s algorithm main drawbacks are as follows.

(i) In nested loops p. 2.1 and p. 3.1 there is a sum accu-
mulation with carry in 32-bit temporary variables 𝑟0,
𝑟1, and 𝑟2, p. 2.1.2, p. 2.1.3 and p. 3.1.2, p. 3.1.3:

2.1.2. 𝑟(𝑤)0 ← 𝑟
(𝑤)
0 + V

(𝑤), 𝑟(𝑤)1 ← 𝑟
(𝑤)
1 + 𝑢

(𝑤)
+ carry,

carry← 0.
2.1.3. 𝑟(𝑤)2 ← 𝑟

(𝑤)
2 + carry, carry← 0.

In this case there are 3 additions of 32-bit integer (includes
2 additions with carry) and 3 assignments of 32-bit variables

𝑟0, 𝑟1 and 𝑟2. The sum accumulation with carry takes place in
each iteration of loop p. 2.1.

(ii) In nested loops p. 2.1 and p. 3.1, for the sum
accumulation, for 32-bit variables 𝑟0, 𝑟1, and 𝑟2 the
transfers are considered using the assembler code for
the implementation of addition operation with carry.
This does not allow pairing and parallelizing [22];
thereforewe observe an ineffective processor resource
usage.

(iii) Loops p. 2 and p. 3 cannot be effectively parallelized
due to high internal linkage code because of carry
consideration.

It is easy to obtain a computational complexity for Com-
ba’s algorithm:

𝐼
Comba
mul = 4𝐼

𝑤

assign + (
𝑛 + 1

2
𝑛 +
1 + 𝑛 − 1

2
(𝑛 − 1))

× (1𝐼
𝑤

mul + 4𝐼
𝑤

add + 6𝐼
𝑤

assign) + 4 (2𝑛 − 1) 𝐼
𝑤

assign

= 4𝐼
𝑤

assign + 𝑛
2
(1𝐼
𝑤

mul + 4𝐼
𝑤

add + 6𝐼
𝑤

assign)

+ 4 (2𝑛 − 1) 𝐼
𝑤

assign,

(1)

where 𝐼𝑤assign is an assignment operation of 32-bit integers,
𝐼
𝑤
add is an addition operation of 32-bit integers, and 𝐼𝑤mul is a
multiplication operation of 32-bit integer.

Figure 2 illustrates the drawbacks of algorithm for 𝑛 = 3
and its impact on computational complexity of algorithm.

Modern CPUs allow the use of 64-bit data types and
operations to achieve better performance, but the algorithm
is not adapted for their use.

In the upper part of the figure, there are two big coef-
ficients 𝑎 and 𝑏 represented by three 32-bit integers 𝑎 =
(𝑎2, 𝑎1, 𝑎0) and 𝑏 = (𝑏2, 𝑏1, 𝑏0), where 𝑎𝑖 and 𝑏𝑖 have a
machine-word bit size. Algorithm iterations are presented
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Input: integers 𝑎, 𝑏 ∈ 𝐺𝐹 (𝑝), 𝑤 = 32 bit, 𝑛 = log2𝑤𝑎.
Output: 𝑐 = 𝑎 ⋅ 𝑏
(1) 𝑟(𝑤)0 ← 0, 𝑟

(𝑤)

1 ← 0, 𝑟
(𝑤)

2 ← 0.
(2) For 𝑘 ← 0, 𝑘 < 𝑛, 𝑘 + + do
(2.1) For 𝑖 ← 0, 𝑗 ← 𝑘, 𝑖 ≤ 𝑘, 𝑖 + +, 𝑗 − − do
(2.1.1) (𝑢V)(𝑤) ← 𝑎(𝑤)𝑖 ⋅ 𝑏

(𝑤)

𝑗 .
(2.1.2) 𝑟(𝑤)0 ← 𝑟

(𝑤)

0 + V
(𝑤), 𝑟(𝑤)1 ← 𝑟

(𝑤)

1 + 𝑢
(𝑤)
+ carry, carry← 0.

(2.1.3) 𝑟(𝑤)2 ← 𝑟
(𝑤)

2 + carry, carry← 0.
(2.2) 𝑐(𝑤)

𝑘
← 𝑟
(𝑤)

0 , 𝑟(𝑤)0 ← 𝑟
(𝑤)

1 , 𝑟(𝑤)1 ← 𝑟
(𝑤)

2 , 𝑟(𝑤)2 ← 0.
(3) For 𝑘 ← 𝑛, 𝑙 ← 1, 𝑘 < 𝑛𝑘, 𝑘 + +, 𝑙 + + do
(3.1) For 𝑖 ← 𝑙, 𝑗 ← 𝑘 − 𝑙, 𝑖 < 𝑛, 𝑖 + +, 𝑗 − − do
(3.1.1) (𝑢V)(𝑤) ← 𝑎(𝑤)𝑖 ⋅ 𝑏

(𝑤)

𝑗 .
(3.1.2) 𝑟(𝑤)0 ← 𝑟

(𝑤)

0 + V
(𝑤), 𝑟(𝑤)1 ← 𝑟

(𝑤)

1 + 𝑢
(𝑤)
+ carry, carry← 0.

(3.1.3) 𝑟(𝑤)2 ← 𝑟
(𝑤)

2 + carry, carry← 0.
(3.2) 𝑐(𝑤)

𝑘
← 𝑟
(𝑤)

0 , 𝑟(𝑤)0 ← 𝑟
(𝑤)

1 , 𝑟(𝑤)1 ← 𝑟
(𝑤)

2 , 𝑟(𝑤)2 ← 0.
(4) 𝑐(𝑤)
𝑛𝑘
← 𝑟
(𝑤)

0 .
(5) Return (𝑐).

Algorithm 1: Comba’s integer multiplication.

Input: integers 𝑎, 𝑏 ∈ 𝐺𝐹 (𝑝), 𝑤 = 32 bit, 𝑛 = log2𝑤𝑎, 𝑛𝑘 = 2𝑛 − 1.
Output: 𝑐 = 𝑎 ⋅ 𝑏
(1) 𝑟
(2𝑤)

0 ← 0, 𝑟
(2𝑤)

1 ← 0, 𝑟
(2𝑤)

2 ← 0.
(2) For 𝑘 ← 0, 𝑘 < 𝑛, 𝑘 + + do
(2.1) For 𝑖 ← 0, 𝑗 ← 𝑘, 𝑖 ≤ 𝑘, 𝑖 + +, 𝑗 − − do
(2.1.1) (𝑢V)(2𝑤) ← 𝑎(𝑤)𝑖 ⋅ 𝑏

(𝑤)

𝑗 .
(2.1.2) 𝑟

(2𝑤)

0 ← 𝑟
(2𝑤)

0 + V
(𝑤), 𝑟(2𝑤)1 ← 𝑟

(2𝑤)

1 + 𝑢
(𝑤)

(2.2) 𝑟
(2𝑤)

1 ← 𝑟
(2𝑤)

1 + hi(𝑤) (𝑟
(2𝑤)

0 ), 𝑟
(2𝑤)

2 ← 𝑟
(2𝑤)

2 + hi(𝑤) (𝑟
(2𝑤)

1 )

(2.3) 𝑐
(𝑤)

𝑘
← low(𝑤) (𝑟

(2𝑤)

0 ), 𝑟
(2𝑤)

0 ← low(𝑤) (𝑟
(2𝑤)

1 ), 𝑟
(2𝑤)

1 ← low(𝑤) (𝑟
(2𝑤)

2 ), 𝑟
(2𝑤)

2 ← 0.
(3) For 𝑘 ← 𝑛, 𝑙 ← 1, 𝑘 < 𝑛𝑘, 𝑘 + +, 𝑙 + + do
(3.1) For 𝑖 ← 𝑙, 𝑗 ← 𝑘 − 𝑙, 𝑖 < 𝑛, 𝑖 + +, 𝑗 − − do
(3.1.1) (𝑢V)(2𝑤) ← 𝑎(𝑤)𝑖 ⋅ 𝑏

(𝑤)

𝑗 .
(3.1.2) 𝑟

(2𝑤)

0 ← 𝑟
(2𝑤)

0 + V
(𝑤), 𝑟(2𝑤)1 ← 𝑟

(2𝑤)

1 + 𝑢
(𝑤)

(3.2) 𝑟
(2𝑤)

1 ← 𝑟
(2𝑤)

1 + hi(𝑤) (𝑟
(2𝑤)

0 ), 𝑟
(2𝑤)

2 ← 𝑟
(2𝑤)

2 + hi(2) (𝑟
(2𝑤)

1 )

(3.3) 𝑐
(𝑤)

𝑘
← low(𝑤) (𝑟

(2𝑤)

0 ), 𝑟
(2𝑤)

0 ← low(𝑤) (𝑟
(2𝑤)

1 ), 𝑟
(2𝑤)

1 ← low(𝑤) (𝑟
(2𝑤)

2 ), 𝑟
(2𝑤)

2 ← 0.
(4) 𝑐
(𝑤)

𝑛𝑘
← low(𝑤) (𝑟

(2𝑤)

0 ).
(5) Return (𝑐).

Algorithm 2: Modified Comba’s integer multiplication.

under the solidus. It should be noted that Comba’s algorithm
implements well-known long multiplication technique, with
a small difference where the multiplier part 𝑎𝑖 𝑖 = 1, 𝑛
multiplies all parts of other multipliers 𝑏𝑗 𝑗 = 1, 𝑛, in case
of fulfillment condition (𝑖 + 𝑗 = 𝑘) (in columns).

Such approach leads not to strings addition (multipli-
cation of intermediate results) as long multiplication but to
columns addition. That allows finding a part of resulting
product 𝑐𝑖 (under the solidus). Each multiplication is accom-
panied by the sum accumulation, as shown in Figure 3.

The computational complexity for 𝑛 = 3 will be

𝐼
Comba
mul = 4𝐼

𝑤

assign + 9 (1𝐼
𝑤

mul + 4𝐼
𝑤

add + 6𝐼
𝑤

assign)

+ 20𝐼
𝑤

assign = 78𝐼
𝑤

assign + 9𝐼
𝑤

mul + 36𝐼
𝑤

add.
(2)

In the following steps of calculation procedure we elimi-
nate the drawbacks.

(i) The modern 32-bit CPUs effectively implement the
addition operations of 32-bit and 64-bit integers,
using 32-bit CPUs commands. That allows imple-
menting a carry accumulation by the addition of
32-bit variables in 64-bit variable-accumulator that
obviate the need for carry accounting and correction
requirements after the addition of variables 𝑟0, 𝑟1, and
𝑟2. An accumulated carry will be accounted in the
final iterations in the loops in p. 2 and p. 3.

(ii) Modern CPUs havemulticore architecture that allows
them to execute several instruction flows at the
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Figure 3: Graphic interpretation of Comba’s algorithm.

same time. This property brings to parallel iterations
execution in loops p. 2 and p. 3 by theOpenMP library
[22–24].

The following notations are introduced in Algorithm 2.

(i) Variable 𝑡(2𝑤) is used to denote 64-bit variables, 𝑡(𝑤) is
used to denote 32-bit variables;

(ii) Operation hi(𝑤)(𝑡
(2𝑤)
) is used to extract 32 the most

significant bits in 64-bit variable, and operation

low(𝑤)(𝑡
(2𝑤)
) is used to extract 32 the least significant

bits in 64-bit variable.

It is not difficult to get a computational complexity of
modified Comba’s algorithm:

𝐼
Mod.Comba
mul = 4𝐼

2𝑤

assign + (
𝑛 + 1

2
𝑛 +
1 + 𝑛 − 1

2
(𝑛 − 1))

× (1𝐼
𝑤

mul + 2𝐼
2𝑤|𝑤

add + 2𝐼
2𝑤

assign)

+ (2𝑛 − 1) (2𝐼
2𝑤|𝑤

add + 1𝐼
2𝑤

assign + 1𝐼
𝑤

assign)
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Figure 4: Graphic interpretation of loop 2 in modified Comba’s algorithm.
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Figure 5: Graphic interpretation of loop 3 in modified Comba’s algorithm.

= 4𝐼
2𝑤

assign + 𝑛
2
(1𝐼
𝑤

mul + 2𝐼
2𝑤|𝑤

add + 2𝐼
2𝑤

assign)

+ (2𝑛 − 1) (2𝐼
2𝑤|𝑤

add + 1𝐼
2𝑤

assign + 1𝐼
𝑤

assign) ,

(3)

where 𝐼𝑤assign is an assignment operation of 32-bit integers,
𝐼
2𝑤
assign is an assignment operations of 64-bit integers, 𝐼𝑤add
is an addition operation of 32-bit integers, 𝐼2𝑤|𝑤add is an
addition operation of 32-bit and 64-bit integers, and 𝐼𝑤mul is
a multiplication of 32-bit integers.

Figures 4 and 5 illustrate Algorithm 2 for 𝑛 = 3; compu-
tational complexity in this case will be

𝐼
Mod.Comba
mul = 27𝐼

2𝑤

assign + 9𝐼
𝑤

mul + 28𝐼
2𝑤|𝑤

add + 5𝐼
𝑤

assign. (4)

3. Comparison with Other Algorithms

In order to provide an objective comparison of given results,
the authors have made the review of well-known software
math libraries [12–21] for public key cryptography. According
to results review [25, 26], the software library GMP was
an etalon [12]. GMP uses Karatsuba’s integer multiplication
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Table 1: Performance measurements of fields.

Field Prime module
𝐺𝐹(𝑝82) 5000000000000000008503491
𝐺𝐹(𝑝164) 24999999999994130438600999402209463966197516075699
𝐺𝐹(𝑝192) 6277101735386680763835789423 176059013767194773182842284081
𝐺𝐹(𝑝224) 26959946667150639794667015087019630673557916260026308143510066298881

𝐺𝐹(𝑝256)
1157920892103562487626974469494075735300861434152903141955336313088670
97853951

𝐺𝐹(𝑝320)
4271974071841820164790042159200669057836414062331724137933565193825968
686576267080087081984838097

𝐺𝐹(𝑝384)
3940200619639447921227904010014361380507973927046544666794690527962765
939911326356939895 6308152294913554433653942643

𝐺𝐹(𝑝521)

6864797660130609714981900799081393217269435300143305409394463459185543
1833976553942450577463332171975329639963713633211138647686124403803403
72808892707005449

Table 2: Experimental results of software implementation of multiplication algorithms.

Field
Time, 𝜇s

Core i3 Pentium dual core
Mod. Comba Comba GMP4.1 Mod. Comba Comba GMP4.1

𝐺𝐹(𝑝82) 0,075 0,120 0,121 0,0687 0,119 0,125
𝐺𝐹(𝑝164) 0,21 0,393 0,4 0,209 0,363 0,407
𝐺𝐹(𝑝192) 0,276 0,393 0,41 0,289 0,363 0,414
𝐺𝐹(𝑝224) 0,343 0,69 0,549 0,364 0,59 0,522
𝐺𝐹(𝑝256) 0,422 0,875 0,638 0,456 0,744 0,648
𝐺𝐹(𝑝320) 0,6973 1,278 0,97 0,686 1,053 0,969
𝐺𝐹(𝑝384) 0,961 1,75 1,38 0,94 1,45 1,36
𝐺𝐹(𝑝521) 1,63 2,8 2,663 1,486 2,41 2,643

algorithm [12]. The comparison of software implementations
will be done by comparing the execution average time of
software implementation of Comba and modified Comba’s
algorithms and implemented in GMP library for one million
iterations.

Tomeasure the algorithmperformance of software imple-
mentation we can use protocols in fields of Table 1 from
[27], except 𝐺𝐹(𝑝82). These fields are recommended [3, 27]
for usage in cryptographic application for different security
levels. Table 1 gives a brief definition of fields and prime
modules.

The proposed modified algorithm Comba and its
prototype-algorithm Comba were implemented in C++,
compiled with Microsoft Visual Studio 2010 in Release
Win32 configuration with Maximize Speed parameter and
SSE2 instruction support.

We will use the etalon library GMP v4.1.2 compiled with
Microsoft Visual Studio. NET and instrumental application
compiled with Microsoft Visual Studio 2010 inWin32 release
configuration with Maximize Speed parameter and SSE2
instruction support.

In testing mainstream mobile platform with Intel Core i3
350M CPU and desktop platform with Intel Pentium Dual
Core E5400 were used.

Performance measurement timings for different algo-
rithms, implementations, and CPU are shown in Table 2.

As we can see from the timing in Table 2, the proposed
modification of the algorithm Comba has 1.5 times better
time characteristic comparedwithGMP.Classic implementa-
tion of Comba’s algorithm is the slowest, which is confirmed
by the theoretical estimation (as it contains a larger number
of additions and assignment operations). In addition, pro-
posed software implementation of multiplication algorithms
ismore efficient onDual PentiumCPUwith higher frequency
than on Core i3 CPU with several instruction streams.
This implementation of multiplication algorithms does not
support parallelization; thus, amore powerfulmulticore CPU
Core i3 with 4 instructions processing flows does not realize
their full potential.

4. Conclusions

The research resulted in the following conclusions.

(1) We ensure an increase in performance of software
implementation of Comba’s integer multiplication
algorithm for 1.5–2 times and surpass of performance
of the popular math library GMP v4.1.2, an average
for 1.5 times.
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(2) Modified Comba’s multiplication algorithm is pre-
ferred to Karatsuba’s algorithm [2] which is used in
GMP library, because implementation of modified
Comba’s algorithm is faster than Karastuba [2] imple-
mentation in GMP for modern hardware platform
(32- and 64-bit).

(3) Delayed carry mechanism allows applying different
parallelization techniques to modified Comba’s algo-
rithm, for example, OpenMP [23], Intel Threading
Building Blocks [28], NVIDIA CUDA [29], and
OpenCL [30].

Recently, the microprocessors development increases the
number of instruction processing flows. Thus, we should
perform the necessity of suitable algorithms development for
efficient parallelization.

NVIDIA has already proposed GPU with more than 256
cores and suitable CUDA toolkit [29] which allows creating
valid multithread applications. This area is already under
close monitoring and is demonstrated in publication [9, 31].
A further line of our research will focus on investigation and
effective parallelization algorithms for arithmetic operations
with integers.
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