Метод построения алгоритма приведения по фиксированному модулю

Национальный авиационный университет

Аспирант кафедры БИТ: Мария Ковтун

Руководитель: доцент кафедры БИТ, к.т.н. Сергей Гнатюк

Содержание

- □ Введение
- Актуальность
- Побитовый метод приведения
- Пословный метод приведения
- Построение пословного метода
- Замеры производительности
- □ Выводы

Введение

Цель: разработка метода построения алгоритма приведения по фиксированному модулю

Объект: процесс приведения по фиксированному модулю

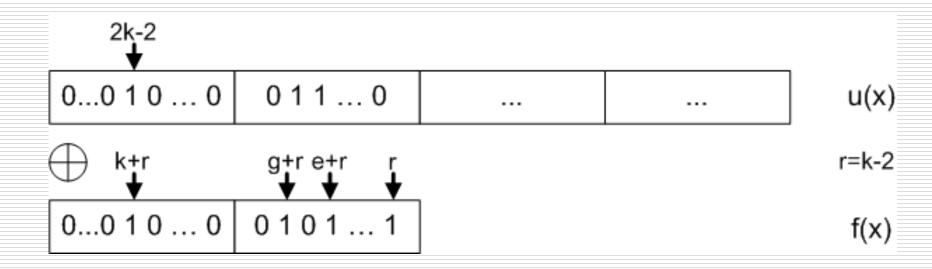
Предмет: неприводимые полиномы заданные в стандартах ДСТУ 4145:2002 и ДСТУ 7624:2014.

Актуальность

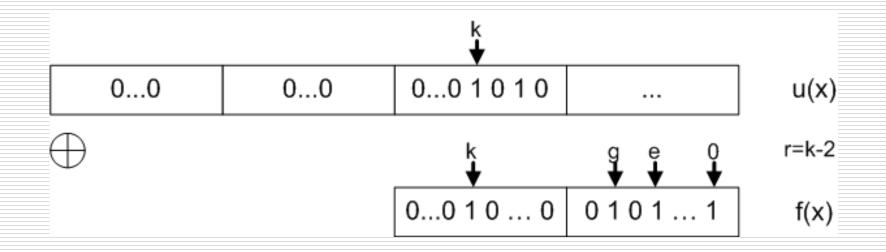
Криптопреобразова- ния	Зашифровывание/ расшифровывание			Формирование и проверка цифровой подписи					Обмен ключами		
Арифметика в группе точек эллептической кривой	Скалярное умножение точек эллиптической кривой Генерация случай точки Сложение точек Удвоение точки						•				
Арифметика в поле GF (2 ^m)	Умноже- ние	Сложе- ние	Дел	ение		зведение квадрат	Привед ние по модул		Инверти- рование	Извлечения квадратного корня	
Операции над массивами	Сдвиг Срав		внение Сложе		ение	Вычитание		Умножение			
Команды CPU	mov, mul, shr, shl, add, sub										

Актуальность

Криптопреобразова- ния	Режимы блочного симметричного шифрования (XTS,)							
Арифметика в поле GF (2 ^m)	Умножение	Сложение	Сложение по модулю		Возведение в степень		Инвертирование	
Операции над массивами	Сдвиг	Сравнение		Сложение		Вычитание		Умножение
Команды CPU	mov, mul, shr, shl, add, sub							


Актуальность

- □ Приведение по модулю
 - Универсальный (побитный)
 - Медленный
 - Произвольный модуль
 - Специализированный (пословный)
 - Быстрый
 - □ Фиксированный модуль
 - □ Отсутствует формализованное описание для построения (как «искусство»)


Известный метод

ПОБИТОВЫЙ МЕТОД ПРИВЕДЕНИЯ ПО МОДУЛЮ

Побитовое приведение по модулю

Побитовое приведение по модулю

Особенности

- Произвольный неприводимый полином
- □ Происходит:
 - k-2 проверки на ненулевой бит.
 - в среднем, (k-2)/2 операций сложения по модулю 2.
 - При каждом сложении по модулю 2, складывается [k/w] машинных слов.

Метод-прототип

ПОСЛОВНЫЙ МЕТОД ПРИВЕДЕНИЯ ПО ФИКСИРОВАННОМУ МОДУЛЮ

Пословный метод (пример)

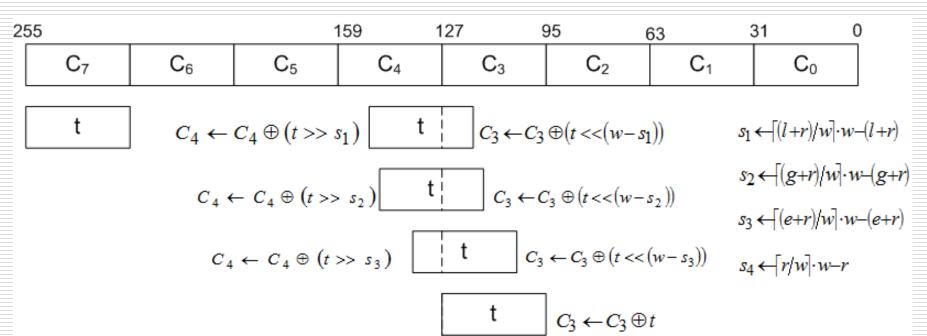
Вход: полином c(x), степени 324.

Выход: $c(x) \mod f(x)$, $f(x)=x^{163}+x^7+x^6+x^3+1$, w=32.

- 1. For i=10 downto 6
 - 1.1. $T \leftarrow C[i]$.
 - 1.2. $C[i-6] \leftarrow C[i-6] \oplus (T < < 29)$.
 - 1.3. $C[i-5] \leftarrow C[i-5] \oplus (T << 4) \oplus (T << 3) \oplus T \oplus (T >> 3)$.
 - 1.4. $C[i-4] \leftarrow C[i-4] \oplus (T>>28) \oplus (T>>29)$.
- 2. T \leftarrow C[5] AND 0xFFFFFF8.
- 3. $C[0] \leftarrow C[0] \oplus (T << 4) \oplus (T << 3) \oplus T \oplus (T >> 3)$.
- 4. $C[1] \leftarrow C[1] \oplus (T >> 28) \oplus (T >> 29)$.
- 5. $C[5] \leftarrow C[5]$ AND 0x00000007.
- 6. Return ((C[5], C[4], C[3], C[2], C[1], C[0])).

Предложенный метод

МЕТОД ПОСТРОЕНИЯ АЛГОРИТМА ПРИВЕДЕНИЯ ПО ФИКСИРОВАННОМУ МОДУЛЮ


Предложенный метод построения

- \Box f(x) = x^k+x^l+x^g+x^e+1, k>l>g>e>1
- Максимальная степень полнома 2k-2, который следует привести
- $\Gamma \leftarrow [2\cdot(k-1)/w]\cdot w k размер сдвига, для выравнивания, <math>W = 32$.
- □ Диапазон битов (х_{k+r}, х_{k+r-1},..., х_{k+r-(w-1)}) складываем по модулю с укзанными битовыми диапазонами

$$(X_{l+r}, X_{l+r-1}, ..., X_{l+r-(w-1)}), (X_{g+r}, X_{g+r-1}, ..., X_{g+r-(w-1)}), (X_{e+r}, X_{e+r-1}, ..., X_{e+r-(w-1)}), (X_r, X_{r-1}, ..., X_{r-(w-1)}).$$

Предложенный метод построения

$$f(x)=x^{128}+x^7+x^2+x^1+1$$

Предложенный метод построения

$$f(x)=x^{128}+x^7+x^2+x^1+1$$

Замеры проивзодительности

СРАВНЕНИЕ

Условия экспериментов

- □ Язык: С++
- □ OC: Microsoft Windows 7 SP1 x86-64
- □ Компилятор: Microsoft C++ x86/x86-64
- □ Число итераций: 1 млн.
- ☐ K1: Intel Core i5-3570 on Windows 7
 SP1 x86-64
- ☐ K2: Core i5-4530 on Windows 7 SP1 x86-64

Замеры производительности

Алгоритм	Время, мкс					
	K1 (x86)	K2 (x86)				
S [128]	0,009327	0,008259				
U [128]	0,324494	0,287312				
S [256]	0,015098	0,013414				
U [256]	1,151691	1,062191				
S [512]	0,027486	0,023108				
U [512]	5,420564	4,417311				

$$f_{128}(x) = x^{128} + x^7 + x^2 + x + 1$$

$$f_{256}(x) = x^{256} + x^{10} + x^5 + x^2 + 1$$

$$f_{512}(x) = x^{512} + x^8 + x^5 + x^2 + 1$$

Подведение итогов

выводы

Выводы

- Разработан метод построения алгоритма приведения по фиксированному модулю.
- Метод может быть применим к различным полиномам, у которых ненулевое может быть произвольным, а не только младшее.
- □ Выигрыш в производительности пословного метода с фиксированным полиномом, по отношению к универсальному, составляет 36 раз для 128 бит, 95 раз для 256 бит и 200 раз для 512 бит.

Вопросы?

Спасибо за внимание!

Контакты

- Национальный авиационный университет
- Кафедра безопасности информационных технологий

- Мария Ковтун
- email: <u>mg.kovtun@gmail.com</u>

Алгоритм

Алгоритм приведения по модулю - фиксированному неприводим пятичлену.

Input: полином c(x) степени не более 2(k-1).

Output: полином $d(x) \equiv c(x) \mod f(x)$.

1.
$$m \leftarrow \lceil 2(k-1)/w \rceil - 1$$
, $n \leftarrow \lceil k/w \rceil$, $r \leftarrow \lceil 2(k-1)/w \rceil \cdot w - k$.

2.
$$s_1 \leftarrow \lceil (l+r)/w \rceil \cdot w - (l+r), z_1 \leftarrow m - (\lceil (l+r)/w \rceil - 1).$$

3.
$$s_2 \leftarrow \lceil (g+r)/w \rceil \cdot w - (g+r), z_2 \leftarrow m - (\lceil (g+r)/w \rceil - 1).$$

4.
$$s_3 \leftarrow \lceil (e+r)/w \rceil \cdot w - (e+r), z_3 \leftarrow m - (\lceil (e+r)/w \rceil - 1).$$

5.
$$s_4 \leftarrow \lceil r/w \rceil \cdot w - r$$
, $z_4 \leftarrow m - (\lceil r/w \rceil - 1)$.

Алгоритм

- 6. for $i \leftarrow m, i \geq n, i -$
- 6.1. $t \leftarrow c_i$.
- 6.2. $d_{i-z_1} \leftarrow c_{i-z_1} \oplus (t >> s_1), d_{i-z_1-1} \leftarrow c_{i-z_1-1} \oplus (t << (w-s_1)).$
- 6.3. $d_{i-z_2} \leftarrow c_{i-z_2} \oplus (t >> s_2), d_{i-z_2-1} \leftarrow c_{i-z_2-1} \oplus (t << (w-s_2)).$
- 6.4. $d_{i-z_3} \leftarrow c_{i-z_3} \oplus (t >> s_3), d_{i-z_3-1} \leftarrow c_{i-z_3-1} \oplus (t << (w-s_3)).$
- 6.5. $d_{i-z_4} \leftarrow c_{i-z_4} \oplus (t >> s_4), d_{i-z_4-1} \leftarrow c_{i-z_4-1} \oplus (t << (w-s_4)).$
- 7. $t \leftarrow c_{n-1}(x_{w-1}, x_{w-2}, ..., x_{(k \mod w)}, 0_{(k \mod w)-1}, ..., 0_0)$ // рассматриваются старшие биты, от (w-1) до $(k \mod w)$, остальные биты игнорируются.
 - 8. if $(n-z_1) \ge 0$ then $d_{n-z_1} \leftarrow c_{n-z_1} \oplus (t >> s_1)$.
 - 9. if $(n-z_1-1) \ge 0$ then $d_{n-z_1-1} \leftarrow c_{n-z_1-1} \oplus (t << (w-s_1))$.

Алгоритм

- 10. if $(n-z_2) \ge 0$ then $d_{n-z_2} \leftarrow c_{n-z_2} \oplus (t >> s_2)$.
- 11. if $(n-z_2-1) \ge 0$ then $d_{n-z_2-1} \leftarrow c_{n-z_2-1} \oplus (t << (w-s_2))$.
- 12. if $(n-z_3) \ge 0$ then $d_{n-z_3} \leftarrow c_{n-z_3} \oplus (t >> s_3)$.
- 13. if $(n-z_3-1) \ge 0$ then $d_{n-z_3-1} \leftarrow c_{n-z_3-1} \oplus (t << (w-s_3))$.
- 14. if $(n-z_4) \ge 0$ then $d_{n-z_4} \leftarrow c_{n-z_4} \oplus (t >> s_4)$.
- 15. if $(n-z_4-1) \ge 0$ then $d_{n-z_4-1} \leftarrow c_{n-z_4-1} \oplus (t << (w-s_4))$.
- 16. $d_{n-1} \leftarrow c_{n-1}(0_{w-1}, 0_{w-2}, \dots 0_{(k \bmod w)}, x_{(k \bmod w)-1}, x_{(k \bmod w)-2}, \dots, x_0).$ /

рассматриваются младшие биты, от $(k \mod w)-1$ до 0, остальные биты - игнорируются.

17. Return (d(x)).